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The motion of a heavy rigid body with a single fixed point in a uniform gravity field is considered. The geometry of the mass of 
the body and the initial conditions of its motion correspond to the case of Goryachev-Chaplygin integrability [1, 2]. In this case 
periodic pendulum-like motions exist, corresponding to oscillations or rotations of the body around an axis of dynamic symmetry, 
occupying a fixed horizontal position. The problem of the orbital stability of such motions is solved. An explicit solution of the 
linearized equations of the perturbed motion is obtained and it is shown that, in the linear approximation, the oscillations and 
rotations of the body are orbitally stable, while the non-linear problem of stability is always a resonance problem: for any amplitude 
of the oscillations (or any angular velocity of rotation) of the body in unperturbed motion its perturbed motion is such that fourth- 
order resonance occurs (two non-unity multipliers are pure imaginary and equal to _+i). It is shown that, in the non-linear 
formulation of the problem, the pendulum-like oscillations of the body are always orbitally unstable, while the rotations are stable. 
© 2004 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Suppose a rigid body has a single fixed point O and moves in a uniform gravity field. The weight of the 
body is mg and the distance from the fixed point to the centre of gravity is equal to l. Suppose OXYZ 
is a fixed system of coordinates, the OZ axis of which is directed vertically upwards. Another system of 
coordinates Oxyz is rigidly connected with the moving body, its axes Ox, Oy and Oz are directed along 
the principal axes of inertia of the body for the point O, and the corresponding principal moments of 
inertia are equal toA, B and C. We will denote byx*, y* and z* the coordinates of the centre of gravity 
in the system Oxyz. We will assume that the geometry of the mass of the body corresponds to the 
Goryachev-Chaplygin case [1-6]. Then, assuming thatA = B = 4C and z* = 0, we can put x* = l and 
y* = 0 without loss of generality. 

We will specify the orientation of the body using the Euler angles, which are introduced in the usual 
way. The equations of motion have the form [7] 

4 -3qr = 0, 4 + 3rp = ~2T3, d-'t -- -~t2](2 

dTl  dT2 d](3 
dt r72 - q73, dt PY3 - rT1, dt q~'l - PYz 

d q  dO d ~  dO d ~  + d~p 
P = "d-TY1 +~-~c°sg, q = ~ - T 2 -  dtsincp' r = -~-Y3 dt 

(1.]) 

Yl = sinOsintg, '~2 = sinOcosg, It 3 = C O S O  

We have introduced the notation p2 = mgl/C. 
In the case of Goryachev-Chaplygin integrability, there is a limit on the initial conditions of motion. 

They must be such that the constant area integral must be equal to zero, i.e. so that the equality 

4(PY1 + qY2) + rT3 = 0 (1.2) 

is satisfied. 
When condition (1.2) is satisfied the equations of motion (1.1), in addition to the energy integral 

and the integral ~ + ~ +  ~ = 1, also have the additional integral 
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r(p2 + q2) _ [t2p~/3 = ~t3c (c = const) (1.3) 

The presence of the additional integral (1.3) enables us to reduce the integration of the equations 
of motion to quadratures. Numerous investigations (see the monographs [3-6] and the bibliographies 
they contain) are devoted to the analytical properties of the solutions of Eqs (1.1) and a qualitative 
analysis of the motion of a body in the Goryachev-Chaplygin case. 

When condition (1.2) is satisfied, Eqs (1.1) have solutions corresponding to plane pendulum-like 
motions of the body, for which 

=const, 0=7t/2, p = q = O ,  r=dtp/dt,  71 =sintp, "/2 =c°sg ,  3~3 =0  

For these solutions the Oz axis of dynamic symmetry of the body is fixed and occupies a horizontal 
position, while the motion of the body around this axis is described by the differential equation of a 
physical pendulum d2cp/dt 2 + g2cosq~ = 0. Eliminating from consideration motions that are asymptotic 
to the unstable equilibrium position of a pendulum (for which q~ = n/2), we will investigate the orbital 
stability of the oscillations of arbitrary amplitude in the neighbourhood of the stable equilibrium position 
(~p = 3n/2) or rotations with an arbitrary angular velocity. 

2. H A M I L T O N ' S  F U N C T I O N  

If the geometry of the mass of the body corresponds to the Goryachev-Chaplygin case, Lagrange's 
function is given by the equalities 

1 2 
L = T - H ,  T = r2C(4p + 4 q  2+r2), II = mgl]q 

Hamilton's function is the sum T + n, in which the projections p, q and r of the angular velocity of 
the body are expressed in terms of the generalized momenta pw P0,P,~, defined by the relations 

OL OL ~L 
Pv = ~-~ = 4 C ( p v ,  + qV2) + Cry3, P0 = ~'~ = 4C(pcosq0- qsing~), p• = ~-~ = Cr 

Taking into account the fact that, when the Goryachev-Chaplygin condition (1.2) is satisfied, the 
quantitypv is equal to zero, we have 

p = (pocos tp-p~ctgOsin tp) / (4C) ,  q = -(posin~p+p~ctgOcostp) / (4C),  r = p~/C 

Then introducing the dimensionless variables ql, q2, Pl and P2 using the canonical transformation 
(with valency (Cg) -1) 

3n rc 
q0 = ~ + q l ,  0 = ~ + q 2 ,  P~0 = C~I'Pl, PO = Cp'P2 

and also the dimensionless time x = gt, we obtain the following expression for Hamilton's function of 
the Goryachev-Chaplygin problem 

114 + 2 2 1 2 
= tg q z ] P l  + H ~ ~P2- cOSql cosq2 (2.1) 

The additional integral (1.3) of the Goryachev-Chaplygin problem in the variables qi, Pi (i = 1, 2) 
can be written in the form 

. 2 2 2~ 
pl(tg q2Pl + P 2 ) - 4 s i n q z ( c o s q l t g q 2 P l -  sinqlp2) = c (2.2) 

3. F O R M U L A T I O N  OF THE P R O B L E M  OF THE ORBITAL STABILITY 
OF PLANE P E R I O D I C  MOTIONS 

Solutions for which q2 = P2 = 0 and ql, Pl are described by canonical equations with Hamiltonian 
H (°) = ~/2p~ - cosql correspond to plane oscillations and rotations of the body around an axis of dynamic 
symmetry. These equations have the integral H (°) --- h = const. When -1 < h < I the body performs 
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oscillations in the neighbourhood of a stable equilibrium position, for which the centre of gravity of 
the body lies on the vertical OZ below the fixed point O. When h > 1 plane rotations of the body around 
the Oz axis occur. 

Henceforth it will be more convenient to write the unperturbed motion in action-angle variables/, 
w, as was done previously in [8] when investigating the plane motions of a Kovalevskaya top. In the 
case of oscillations we put kl = sin(J3/2), where [3 is the amplitude of the oscillations (0 < 13 < n). Then 

where 

2K(k l )w 
ql = 2arcsin[klSn(u, kl)], Pl = 2klCn(u, kl), u = (3.1) 7t 

( 3 . 2 )  w = ohx+w(0) ,  o~ 1 = 2K(kl) 

while kl = kl (I) is the inverse of the function 

I = 8 [ E ( k l ) - ( 1 -  k~)K(kl)] 

In the case of rotations, we put k2 2 = 2(1 + h) -1. Then 

= 2am(u, k2), Pl = 2 d n (  u, k2), q l  
~2 

where 

w = 0hx + w(0) ,  

while k2 = k2(I) is the inverse of the function 

(3.3) 

K(k2)w 
u --- ~ ( 3 . 4 )  7t 

0 2 = k2K(k2 ) (3.5) 

4E(k 2) 
xk 2 (3.6) 

We have used the generally accepted notation for elliptic functions and integrals [9]. 
In unperturbed motion we have q2 = P2 = 0 and I = I0 = const, while the variables ql andpl  for a 

specified value of I0 are defined by (3.1)-(3.3) in the case of oscillations, and by (3.4)-(3.6) in the case 
of rotations. 

We will put rl = I - I 0. The problem of the orbital stability of plane oscillations and rotations of a 
body is equivalent to the problem of their stability with respect to the variables q2, P2 and rl. 

4. THE S T A B I L I T Y  OF THE O S C I L L A T I O N S  

We will take the quantity mlz as the new independent variable. Hamilton's function of the perturbed 
motion can be represented in the form of the series 

H = r I + h 2 + H 4 +  . . .  ( 4 . 1 )  

The functions h2 and/ /4  are defined by the equalities 

K(kl) .  2 . 2. 2 2 4 
h2 = ~ [P2 + 4~to2q2), /'/4 = P-20rl + ~'12rlq2 + go4q2 

x [ e ( k t )  - (1  - k ~ ) K ( k t ) ]  
go2 = 3dn2u+k2-2 ,  g20 = 16k2(l_k2)KZ(k,)  

~ ! 2  = - -  
1 

[ 1 - k~ + 3snudnu(cnuznu - snudnu)] 
4(1 -k~) 

(4.2) 

K(kl)  (6k21en2u + 2kZl - 1) 
!~04 = 
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The quantity u is given by the last formula of (3.1), and kl corresponds to the unperturbed motion. The 
function (4.1) is r~-periodic in w. The dots in (4.1) denote as set of terms higher than the fifth power in 
q2, P2 and I ril 1/2. 

Integral (2.2) for the equations of perturbed motion can also be represented in the form of a series 
in powers of the quantities q2, P2 and rl 

g2 + g4 + . . . .  C (4.3) 

where gn is a form of power n in q2, P2 and ] rl 11/2 with coefficients that are periodic in w. In this case 
g2 is a quadratic form in q2 and P2, having the form 

g2 8klcnu(2k~_. , 2  2 . 2 = 1 - g l e n  u )q  2 + 8 k l s n u d n u q 2 P 2  + 2 k l c n u p  2 (4.4) 

Stability in the first (linear) approximation. In the linearized equations of perturbed motion r 1 = const, 
while the change of variables q2 andp2, if we take the quantity w as the independent variable, is described 
by the equations 

dq 2 Oh2 dP2 3h 2 
dw = r3p2" dw = -e3q-"-22 (4.5) 

The function h 2 is defined by the first equation of (4.2). 
Suppose X(w) is the matrix of the fundamental solutions of system (4.5), normalized by the condition 

X(0) = E, where E is the second-order identity matrix. The elements xij(w) of the matrix X satisfy the 
equations 

dXl)_  K(kl) dx2] = 2K(kl) 
dw 2re "x2j' d w  -~ '~t°zxlj; J = 1, 2 (4.6) 

and the initial conditions 

XII(O ) : X22(0 ) : 1, XI2(O ) -- X21(O ) = 0 (4.7) 

The quadratic part (4.4) of integral (4.3) is the first integral of linear equations (4.5). Using this integral, 
Eqs (4.6) can be integrated in explicit form and we obtain the following expressions for the quantities 
xis(w) 

x H = cnv dnv f ( v ) ,  x21 = 2snv [4k~sn2v-(1 +k~)(1 +k~sn4v)]f3(1)) 

x12 = Shy f(1))/2, x22 = cnv dnv (1 + k~sn4v)f3(v) (4.8) 

. 2  4 -1 /2  
f ( v )  = ( 1 - g x s n  1)) , 1) = K(kl)wlrc 

Here the modulus of the elliptic functions is equal to kl. 
When w = rc the matrix X(w) will have the following form 

II0a21F 214 
= , a = [ 4 ( 1 - g l )  l 

- a  2 0 
(4.9) 

The roots (multipliers) of the characteristic equation of this matrix 

g2+ 1 = 0 (4.10) 

are different and have moduli equal to unity (gl = i and P2 = - - i ) .  Hence it follows [10] that the plane 
oscillations of the rigid body being investigated are orbitally stable in the linear approximation. 

Calculation of the characteristic exponents. Resonance. Suppose +_ i)~ are the characteristic exponents 
of linear system (4.5). It follows from the equations gl, 2 = exp(___irc~,) that )~ will be the root of the 
equation cosnk  = 0. Hence it followsthat )~ is a constant semi-integer number, which is independent 
of the amplitude of the oscillations of the body in unperturbed motion. The specific value of this number 
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can be obtained using the continuous dependence of the characteristic exponents on the quantity kl. 
To do this we consider oscillations of infinitesimal amplitude (kl ~ 0). In the limiting case, when 
kl = 0, the function h 2 is the Hamiltonian (p~ + 4q2)/8 of a linear oscillator with frequency equal to 
1/2. Consequently, )~ = 1/2. Hence, bearing in mind the It-periodicity of the Hamiltonian of the perturbed 
motion with respect to w, we obtain that the problem of the orbital stability of the plane oscillations 
of a rigid body in the Goryachev-Chaplygin case is always a resonance problem: for any amplitude of 
the oscillations fourth-order resonance (4)L = 2) occurs. 

The orbital instability of plane oscillations in the strict non-linear formulation of the problem. 
According to the algorithm obtained earlier in [11], to investigate the non-linear problem of the orbital 
stability of the periodic motions of the body considered, it is necessary to obtain the normal form of 
the Hamiltonian of the perturbed motion (4.1). 

Normalization of the quadratic part of the Hamiltonian (4.1). We must first construct a 
transformation which normalizes the Hamiltonian hz(q2 , P2, w) of linear system (4.5). To do this (see 
[11]) we must replace the variables w, rl, qz, P2 ----> ul, 191, b/z, 192 using the formulae 

1 2 2 
W = Ul, r l -- 111+~(u2+112)-h2(nl lU2-I-n12112,  n21u2+n22112, Ul) 

q2 = n11u2+tl12112, P2 = n21u2+n22112 

• U 1 U I l x . l cosUt  +ax j2sm.~ ,  1 . ul njl a J 2 nj2 = = --XjlSm-~-+axj2cos-'~-,  j = 1,2 
G Z z5 

(4.11) 

where the functions xij(ul) are specified by formulae (4.8). 
Transformation (4.11) is canonical, univalent and x-periodic in Ul. After the replacement (4.11), 

Hamilton's function (4.1) can be written in the form 

F = F 2 + F 4 + . . .  

1 2 2 
=" 112), F2 111 + ,i(u2 + 

2 
F 4 = ~201)1 + f2 (u2  , l/2, Ul)111 + f4(u2, 1)2, ul) 

(4.12) 

Herefk  is a form of power k in/~2, 192 with rc-periodic coefficients in ul 

y v g 
fk = ~., fvl.t(Ul)U2"°2 

v + g=k  

We will write the expressions required later for the coefficients of the form f4 

2 2 4 
f40 = J/20m20 + g12m20nll + ]-to4n11 

3 
f31 = 2920m20mll + gl2(mllnl21 + 2m20nlln12) + 4~04nl ln12 

2 2 2 
f22 = ~t20(m21 + 2m20m02) + ~tlz(mo2n~l + 2 m l l n l l n l 2  + m20n12) + 6 g o 4 n u n i 2  

2 3 
f13 = 2920mllm02 + ] ' t lz(mllnl2  + 2mo2nlln12) + 4~to4nlln12 (4.13) 

4 
f 04 = ~20m22 + ~12mo2n~2 + go4n12 

m20 = 1 / 4 -  K(k,)(4t.tozn~l + n~l)/(4x), m02 = 1 / 4 -  r(k,)(4go2n~2 + nZ2)/(4x) 

roll = -K(kl)(4go2nlxnl2 + n21nz2)](2rc) 

In the new variables, integral (4.3) can be written in the form of a series in powers of the quantities u2, 
192 and 1) 1 

G = G 2 + G  4+ . . . .  c (4.14) 
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where Gn is a form of power n in u2, 1)2 and 11)1 [ 1/2, where calculations show that 

2 . u, cos @ -(cos u2 u 2 G2 4kl 1~/~_ k21 [ ( s ln~u  2 u 2 (4.15) 

The dots in relations (4.12) and (4.14) denote a set of terms of higher than the fifth power in u2, 1)2 
and 11)111/z. 

Normalization of the Hamiltonian of the perturbed motion up to terms of the fourth power inclusive. 
We can obtain the normal form of terms of the fourth power in Hamilton's function (4.12), following 
the approach described earlier in [11], using the Deprit-Hori method [12, 13]. The normalizing canonical 
t r a n s f o r m a t i o n  Ul, l)1,/,12, 1)2 -'> 01, Pl, ~2, 112 will be close to identical to 

Ul = e l  + . . . .  1)1 = Pl  + . . . .  //2 = ~2 + . . . .  1)2 = 1"12 + ... 

The dots denote convergent series in powers of 91, ~2, 112 with coefficients that are rt-periodic in 01. 
The normalized Hamiltonian (4.12) takes the form 

1 2 2 
1" = Pl  + ~P2 + Czopl + CllOlP2 + P2[c02 + Ix40sin(402 - 201) + ~40c0s(402 - 201)] + 03; (4.16) 

~2 = 2~2sin02, 112 = 2~2cos02 

The constant coefficients co, ~40 and [~40 are calculated from the formulae [11] 

1 
C20 = ~t20, Cll = ( f 2 0 + f 0 2 ) ,  C02 = ~(3f40+f22+3f04)  

1 1 
~ 4 0  = - ~(04osin2ul-Z4oC°S2Ul), 640 = ~(64oCOS2Ut + Z4osin2ut) (4.17) 

040 = f 4 0 - f 2 2  + f 0 4 ,  Z40 = f 1 3 - f 3 1  

The symbol (g) denotes the mean value of the 7t-periodic function g(ul) over a period. 
Apart from the unimportant constant factor 8k14 1 - k 2, integral (4.14) can be written in the form 

G = p z c o s ( 2 0 2 - 0 1 ) +  0 2 = const  (4.18) 

We have denoted by Ok the set of terms not lower than the k-th power in 91 and 92. 
It can be seen from relations (4.2), (4.8), (4.13) and (4.17) that 040 is an even function of ul while 

Z40 is an odd function of ul. Hence, the coefficient t~40 of normal form (4.16) is equal to zero. 
We can simplify the structure of normal form (4.16) and integral (4.18) somewhat by making the 

equivalent canonical replacement of variables in accordance with the formulae 

e l  = Ilq,  02 = I l q 1 2 + ~ 2 ,  91 = R1-R212, P2 = R2 (4.19) 

Taking into account the fact that ~40 = 0, we have in the new variables 

2 
F = R 1 + a20R 1 + alIRIR 2 + (a02 + [~40cos41lt2)R 2 + 0 3 (4.20) 

a20 = c20, a l l  = c11 -c20 ,  a02 = c02-c11]2 + c2014 
(4.21) 

U = Racos2~g 2+ 02 = c o n s t  

The properties of the coefficients of normal form (4.20), which arise from the existence of integral 
(4.21). The sufficient conditions for stability and instability of a system with Hamilton function of the 
form (4.21) are well known [13]: if the inequality l a02l > 11 401 is satisfied, the system is stable, and if 
la02[ < 1~401, the system is unstable. The coefficients of the normal form are calculated from (4.17). 
But in the specific problem of the stability of the plane oscillations of a rigid body being investigated 
here, the equations of perturbed motion have the integral (4.21). Hence, as previously, without having 
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to carry out calculations using these formulae, it can be shown that the coefficients of normal form (4.20) 
are not completely arbitrary, but must satisfy certain relations. 

In fact, the condition that (4.21) is an integral can be written in the form of the Poisson bracket of 
the functions G and F being equal to zero 

2 
v (aG aV aG o 
i~=l~.~ii~ii ~eiOvi ) = 

It follows from relations (4.20) and (4.21) that this condition can be written in the form of an equality 

sin2~zR2[a11R1 + 2(a02 - I]40)R2] + 0 3 = 0 

which must be satisfied for any values of ~1, g2 and arbitrary fairly small R1 and R2. This is only possible 
when the following relations are satisfied 

a l l  = O, a02 = 1340 

Consequently, the normalized Hamiltonian (4.20) has the following structure 

2 
F = R 1 + azoR 1 + 1340(1 + cos411/z)R ~ + 0 3 (4.22) 

Computer calculations using formulae (4.17) showed that the coefficient 1340 of normal form (4.22) 
is a positive function of kl (i.e. of the amplitude of the oscillations of a rigid body in unperturbed motion). 
As kl ~ 0 the function 1340 approaches zero, and as kl ~ 1 it increases without limit. A graph of the 
function 1340 = [3a0(kl) is shown in Fig. 1. 

Proof of the orbital instability of plane oscillations. For Hamilton's function (4.22) the sufficient 
conditions for stability and instability formulated above are not satisfied. And, consequently, for any 
amplitude of the oscillations of the body in unperturbed motion the critical case of fourth-order 
resonance is obtained [14, 15]. In this case the approximate system, Hamilton's function of which is 
obtained from the function (4.22) by dropping the terms 03, is unstable. Generally speaking, it should 
be possible to choose the terms 03 so that the total system remains unstable or, conversely, converts 
into a stable state [14, 15]. But, as can be seen from what follows, the latter is impossible in the specific 
problem considered, and this is due to the existence in the equations of perturbed motion of an integral 
of the form (4.21). 

To prove the orbital instability of the motion of the rigid body investigated, it is sufficient to show its 
instability at the zeroth isoenergy level F = 0. 

We will take the coordinate ~1 as the independent variable. It follows from the equations of motion 
corresponding to Hamilton's function (4.22) that, in a fairly small neighbourhood of the unperturbed 
trajectory, the variable ~1 will be a monotonically increasing function of time and, consequently, it can 
play the same role as the time in the instability problem. 

~40 

0.5 

0 1.0 

Y 
0.5 k I 

Fig. 1 
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From the equation F = 0 for small R 1 and R 2 we obtain 

R 1 = -S  = -[~40(1 + cos4w2)RZ2+rS(Rz, VZ, Vl), ~3 = O(R~) (4.23) 

At the isoenergy level F = 0 the perturbed motion described by Whittaker's equations [16], which 
have the Hamilton form 

dig2 ~ S  
dlgl = ~ = 2~40(1 + cos41gz)R 2 + O(R2), 

dR2 OS . 2 

- = 4134oSm4~2R 2 + O(R~) 
dgtl Ogt2 

(4.24) 

These equations have the integral 

G ( R 2 ,  ~112,/I/1) = R2cos21l t  2 + (~(R2,/112, It/1) = eonst, (7 = O(R~) (4.25) 

which is obtained from integral (4.21) if we replace the quantity R1 in it by its value defined by relations 
(4.23) 

To prove the instability we will use Chetayev's theorem [10]. We will take Chetayev's function in the 
form 

2 • 

V = R 2 s m 4 1 g  2 (4.26) 

We will take the region 0 < 1112 < g/4 as the region V > 0. 
By virtue of the equations of motion (4.24) we obtain the following expression for the derivative of 

the function (4.26) 

dV 
- 8~40(1 + cos4gtz)R~ + O(R 4) (4.27) 

For the trajectories !II 2 = Ig2(llll) , R 2 = R2(~l ) of system (4.24), which begin in the region V > 0 for 
fairly small values of R2(0), the quantity Go = G(R2(0), ~II2(0), 0) of constant integral (4.25) is non-zero. 

2 It follows from the relation G = Go that R2co52~2 = G O -I- O(R2). Taking this equation into account, 
expression (4.27) for the derivative dV/d~a can be represented in the form 

dV _ 16~40Rz[G20 + GoO(R 2) + O(R~)] 
dgt I 

For sufficiently small R 2 the derivative dV/d~l is positive. Consequently, by Chetayev's theorem, we 
have instability. 

5. P E N D U L U M - L I K E  R O T A T I O N S  OF T H E  B O D Y  

In the case of rotations, Hamilton's function of perturbed motion, as in the case of oscillations, can be 
represented by a series of the form (4.1), where now the quantity ~02"c is taken as the independent variable, 
while the function h2(q2,P2, w) is given by the equalities 

k 2 K ( k 2 ) r  2 2 = kza(3dn2u + k 2-  2) h2 = -~- tP2 + 4Vo2q2], v02 (5.1) 

The quantity u is defined by the last of relations (3.4) and k 2 corresponds to the unperturbed motion. 
1/2 The terms of the expansion (4.1) of powers higher than the third in q2, P2 and I rl I , are not written, 

since their explicit expression is not required in what follows. The function (4.1) is 2n-periodic in w. 
We will write integral (4.2) in the form of series (4.3), where 

g2 8k~3dnu(1 .2 2 , 2 -1 2 
= - tc2cn u)q2 + 8snucnuq2P2 + 2k2 dnup2 (5.2) 
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We can obtain the following explicit expressions for the elements xij(w) of the matrix of fundamental 
solutions X(w) of system (4.5) 

x,, = cnvdnvg(v), x2, = 2k2'snv[4k2sn2v - (1 + k22)(1 + k~sn4v)lg3(v) 

2 4 3 x12 = k2/2 snvg(v), x22 = cnvdnv(1 +k2sn v)g (v) 

, 2  4 . - 1 /2  
g ( v )  = ( 1 - r 2 s n  v )  , v = K(k2)w/(2x ) 

(5.3) 

In expressions (5.3) the modulus of the elliptic functions is equal to k 2. 
The matrix X(2r 0 will be 

r ob2fj X ( 2 ~ )  = - b  2 0 

[4(I --k2)11/4 (5.4) 
A 

Its characteristic equation has the form (4.10). Hence, as in the case of oscillations, we have Pl = i and 
~2 = --i, and, consequently, pendulum-like rotations of the body are orbitally stable in the linear 
approximation. 

The imaginary part of the characteristic exponents +i)~ satisfies the equation cos2n)~ = 0. Hence, 
the quantity )~ is uniquely defined. We can only assert that it is independent of the angular velocity of 
rotation of the body in unperturbed motion and differs from an integer by an amount equal to 1/4. The 
non-uniqueness is eliminated by considering infinitely large angular velocities (k2 ~ 0). If we make the 
canonical replacement of variables in Hamiltonian (5.1) then, in the limit k2 = 0, we obtain the 
Hamiltonian @2 + #22)/8 of a linear oscillator with frequency equal to 1/4. Consequently, 3, = 1/4. Hence, 
in the case of rotations, as in the case of oscillations considered above, we always have fourth-order 
resonance. 

However, unlike the case of oscillations, the pendulum-like rotations of a rigid body are orbitally 
stable in the Goryachev-Chaplygin case. In order to prove this we will use Rumyantsev's theorem on 
the stability with respect to some of the variables [17]. We obtain the function V as a quadratic 
combination of the integral H = const and the additional integral (4.3). 

It is convenient first of all to make the canonical replacement of variables w, rt, q2, Pz --) ux, Vb U2, 
1)2, which is 2n-periodic in ul, which normalizes the Hamiltonian of the linear system of equations of 
the perturbed motion. This replacement is given by equalities similar to (4.1 1). We only need to replace 
the coefficient 1/4 in the equality for rl by the coefficient 1/8, and the coefficients nij must now be 
calculated from the following formulae 

1 ul  u l  1 . u l  ul  nil = ~XjlCOS-~+bxj2sin--~, nj2 =-~XjlSln--~+bxj2cos- ~, j = 1,2 

The functions xij(ul) are given by Eqs (5.3). 
In the new variables, the Hamiltonian of the perturbed motion takes the following form 

1 2 2 
F = l) 1 + g(u 2 + l)2) +. . .  (5.5) 

while integral (4.3), apart from the constant factor 4 4 1 - k~/k 2, can be written in the form 

2 2 
G = u 2 + V 2 + . . . .  const (5.6) 

In Eqs (5.5) and (5.6) the dots denote terms of series the power of which in u2, o2, ]1) 1 ] 1/2 is higher 
than the third. 

Suppose 

V = F 2 + G 2 (5.7) 
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The function V >1 0, where V = 0 only for those values of the variables 1)1, u2 and 132 which satisfy 
the system of two equations 

F = 0, G = 0 (5.8) 

From the first equation we can express the quantity 1)1 in terms of u2, 1)2 and uv We obtain 

1 2 2 ~ 
= - = v2) ) (5.9) 1) 1 "~(U2+D2)+RI(U2, D2, Ul), k 1 O((U~+ 2 2 

Taking this equation into account, the second equation of system (5.8) can be written in the form 

2 2 2 2  
u2 + v2 + G(u2, v2, u~) = O, G = O((u~ + o2) ) 

For sufficiently small u 2 and 1)~ this equation is satisfied only when u 2 = 1) 2 = 0. It follows from (5.9) 
that 1)1 = 0. Hence, the function Vis positive-definite in the variables 1)1, u2 and 1)2 and, by Rumyantsev's 
theorem, the unperturbed motion is stable with respect to these variables. This also indicates that the 
pendulum-like rotations of a rigid body in the Goryachev-Chaplygin case are orbitally stable. 
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